Reserve capacity for ATP consumption during isometric contraction in human skeletal muscle fibers.

نویسندگان

  • Y S Han
  • D N Proctor
  • P C Geiger
  • G C Sieck
چکیده

Maximum velocity of the actomyosin ATPase reaction (V(max) ATPase) and ATP consumption rate during maximum isometric activation (ATP(iso)) were determined in human vastus lateralis (VL) muscle fibers expressing different myosin heavy chain (MHC) isoforms. We hypothesized that the reserve capacity for ATP consumption [1 -- (ratio of ATP(iso) to V(max) ATPase)] varies across VL muscle fibers expressing different MHC isoforms. Biopsies were obtained from 12 subjects (10 men and 2 women; age 21--66 yr). A quantitative histochemical procedure was used to measure V(max) ATPase. In permeabilized fibers, ATP(iso) was measured using an NADH-linked fluorometric procedure. The reserve capacity for ATP consumption was lower for fibers coexpressing MHC(2X) and MHC(2A) compared with fibers singularly expressing MHC(2A) and MHC(slow) (39 vs. 52 and 56%, respectively). Tension cost (ratio of ATP(iso) to generated force) also varied with fiber type, being highest in fibers coexpressing MHC(2X) and MHC(2A). We conclude that fiber-type differences in the reserve capacity for ATP consumption and tension cost reflect functional differences such as susceptibility to fatigue.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Effect of denervation on ATP consumption rate of diaphragm muscle fibers.

Denervation (DNV) of rat diaphragm muscle (DIAm) decreases myosin heavy chain (MHC) content in fibers expressing MHC(2X) isoform but not in fibers expressing MHC(slow) and MHC(2A). Since MHC is the site of ATP hydrolysis during muscle contraction, we hypothesized that ATP consumption rate during maximum isometric activation (ATP(iso)) is reduced following unilateral DIAm DNV and that this effec...

متن کامل

Age-related changes in ATP-producing pathways in human skeletal muscle in vivo.

Energy for muscle contractions is supplied by ATP generated from 1) the net hydrolysis of phosphocreatine (PCr) through the creatine kinase reaction, 2) oxidative phosphorylation, and 3) anaerobic glycolysis. The effect of old age on these pathways is unclear. The purpose of this study was to examine whether age may affect ATP synthesis rates from these pathways during maximal voluntary isometr...

متن کامل

Cross bridges account for only 20% of total ATP consumption during submaximal isometric contraction in mouse fast-twitch skeletal muscle.

It is generally believed that cross bridges account for >50% of the total ATP consumed by skeletal muscle during contraction. We investigated the effect of N-benzyl-p-toluene sulfonamide (BTS), an inhibitor of myosin ATPase, on muscle force production and energy metabolism under near-physiological conditions (50-Hz stimulation frequency at 30 degrees C results in 35% of maximal force). Extensor...

متن کامل

Why Muscle is an Efficient Shock Absorber

Skeletal muscles power body movement by converting free energy of ATP hydrolysis into mechanical work. During the landing phase of running or jumping some activated skeletal muscles are subjected to stretch. Upon stretch they absorb body energy quickly and effectively thus protecting joints and bones from impact damage. This is achieved because during lengthening, skeletal muscle bears higher f...

متن کامل

Skeletal muscle transverse strain during isometric contraction at different lengths.

An important assumption in 2D numerical models of skeletal muscle contraction involves deformation in the third dimension of the included muscle section. The present paper studies the often used plane strain description. Therefore, 3D muscle surface deformation is measured from marker displacements during isometric contractions at various muscle lengths. Longitudinal strains at superficial musc...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Journal of applied physiology

دوره 90 2  شماره 

صفحات  -

تاریخ انتشار 2001